tugas akhir konsep dasar ipa 1 : kumpulan resume selama 1 semester



GELOMBANG
Pengertian Gelombang
Gelombang adalah bentuk dari getaran yang merambat pada suatu medium. Pada gelombang yang merambat adalah gelombangnya, bukan zat medium perantaranya. Satu gelombang dapat dilihat panjangnya dengan menghitung jarak antara lembah dan bukit (gelombang tranversal) atau menhitung jarak antara satu rapatan dengan satu renggangan (gelombang longitudinal). Cepat rambat gelombang adalah jarak yang ditempuh oleh gelombang dalam waktu satu detik.
Macam Macam Gelombang
Gelombang dibedakan atas beberapa macam, dan pembagian itu didasarkan pada berbagai jenis baik pembedaan gelombang berdasarkan jenis perambatannya ataupun berdasarkan hal lain yang berkaitan dengan gelombang.
Berdasarkan medium perambatannya, gelombang dapat dibedakan menjad dua bagian, yaitu :
1.                  Gelombang mekanik
Gelombang mekanik adalah sebuah gelombang yang dalam perambatannya memerlukan medium, yang menyalurkan energi untuk keperluan proses penjalaran sebuah gelombang. Suara merupakan salah satu contoh gelombang mekanik yang merambat melalui perubahan tekanan udara dalam ruang (rapat-renggangnya molekul-molekul udara). Tanpa udara, suara tidak bisa dirambatkan. Di pantai dapat dilihat ombak, yang merupakan gelombang mekanik yang memerlukan air sebagai mediumnya. Contoh lain misalnya:
·                      Gelombang pada tali atau per (slinky).
·                      Gelombang permukaan air
·                      Gelombang seismik
·                      Gelombang tegangan
·                      Gelombang akustik
·                      Gelombang infrasonik (fü < 20 Hz)  Gelombang suara (20 Hzü < f < 20 kHz)
·                      Gelombang ultrasonik (fü > 20 kHz)
Berdasarkan arah perambatannya, gelombang mekanik dibedakan menjadi dua jenis :
1.)                Gelombang transversal
Gelombang transversal adalah gelombang yang arah getar dari tiap titik partikel dalam medium, tegak lurus dengan arah perambatan gelombang. Contohnya gelombang cahaya, gelombang permukaan air, dan gelombang pada tali. Untuk melihat arah getar dari gelombang transversal dapat kita gunakan tali dengan cara salah satu ujung tali diikat sedangkan ujung yang lain dibiarkan bebas.


https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjwNdnDoiZvDEOhIV2phXm5azS1pWKHZulJeYBMc_XLcqd2aPz5gSdKa0flgYylaPJ8EeswHaEF4BcTUJoa7cJhLz-BEepmKr93F8FQE2x9cF646KwY1wV-uZT8pLd61qKY6EKDplDVV2NY/s1600/images.jpg

Pada kasus gelombang tali, gerakan tangan naik turun mengakibatkan energi pada tali. Energi tersebut menggetarkan daerah di sekitarnya sehingga daerah disekitarnya ikut pula bergetar naik turun, demikian seterusnya sampai ujung tali. Pada gelombang transversal, satu panjang gelombang adalah jarak yang sama dengan satu bukit gelombang ditambah satu lembah gelombang. Ciri yang dimiliki gelombang transversal, terdapat satu bukit gelombang dan lembah gelombang dan satu panjang gelombang (lamda) adalah jarak yang sama dengan satu bukit gelombang dengan satu lembah gelombang. 
2.)                Gelombang Longitudinal
          Gelombang longitudinal adalah gelombang yang arah getarnya searah (paralel) dengan arah rambatannya. Contohnya gelombang pada pegas (slinki) dan gelombang cahaya. Ketika slinki di gerakkan kedepan dan kebelakang, maka pada slinki akan terbentuk rapatan-rapatan dan renggangan-renggangan seperti yang ditunjukkan pada gambar. Pada gelombang longitudinal, satu panjang gelombang adalah jarak yang sama dengan satu rapatan dan ditambah satu renggangan. Ciri yang dimiliki gelombang longitudinal, terdapat rapatan dan renggangan dan satu panjang gelombang adalah jarak yang sama dengan satu rapatan ditambah satu renggangan.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEirc8lhWdIpyyE0DHQberoTrd4zcLddotChC171tQfAdgUFFdRzmNNh8cFercfURVA4Z9E3LAda6_nOiN4EljzIX1xiPYm1UZSupmvviFncZ2Ma5CLpzuT_ARVwwrsaimdm6GJ4du6F8y21/s1600/longi.jpg

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgKQBVZSZkxbvLfykboEOkjIpnmdedxVltC5wss9sf3pRHj_jZ0Vk_3YUrXGUWRJciMtctb7HhgevuQieZ_BUzPtcsFN-30tkFJJt9WGg4B32O7RhUnX-98OKMGaLXAnwkZ5EswWFt6C8pd/s1600/image010.gif



2.                  Gelombang elektromagnetik
Gelombang Elektromagnetik adalah gelombang yang dapat merambat walau tidak ada medium. Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.
Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi elektromagnetik.
Spectrum gelombang elektromagnetik
Spektrum gelombang elektromagnetik terdiri atas tujuh macam gelombang yang dibedakan berdasarkan frekuensi serta panjang gelombang tetapi cepat rambat di ruang hampa adalah sama. Yaitu c =3 x 108 m/s. Seperti yang sudah dibahas dalam teori Maxwell tentang gelombang elektromagnetik. frekuensi gelombang terkecil adalah gelombang cahaya serta panjang gelombang terbesar sedangkan frekuensi terbesar adalah sinar gamma serta panjang gelombang terpendek.
Urutannya adalah:  
·                     gelombang radio dan televisi
·                     gelombang mikro
·                     infra merah
·                     cahaya tampak
·                     ultraviolet
·                     siar x
·                     sinar gamma
Urutan dari atas ke bawah adalah frekuensi makin besar serta panjang gelombang makin pendek karena frekuensi dan panjang gelombang berbanding terbalik seperti yang sudah dibahas pada gejala-gejala gelombang.

Berikut kegunaan serta sifat dari spektrum gelombang elektromagnetik 
 
1. Gelombang radio dan Televisi
Gelombang radio dan televisi, memiliki frekuensi terkecil untuk semua spektrum gelombang elektromagnetik frekuensi dimulai dari 30 kHz . sumbernya adalah oscilator elektronik yang bergetar. Gelombang ini memiliki kegunaan serta dikelompokkan tergantung kepada panjang gelombangnya serta frekuensinya. Mulai dari alat komunikasi radio FM, Televisi serta telepon.

2. Gelombang Mikro.
Gelombang mikro merupakan gelombang radio dengan frekuensi paling tinggi(SHF=Super High Frekuensi), yaitu 3 GHz (3 x 109 Hz).Gelombang mikro dihasilkan oleh peralatan yang dinamakan tabung klystron. Kegunaanya adalah sebagaipenghantar energi panas yang digunakan pada oven mikrowave(mikrowave oven) untuk memasak makan lebih cepat serta ekonomis. Kegunaan lain adalah pada antene RADAR(Radio Detection and Ranging) pesawat radar ini bekerja menggunakan sifat pemantulan seperti halnya pada binatang kelelawar yang menggunakan ultrasonic untuk penginderaan.

3. Infra merah.
Sinar infra merah memiliki daerah dengan jangkauan frekuensi 1011 sampai 1014 Hz. Sinar infra merah dihasilkan oleh elektron dari molekul-molekul yang bergetar karena panas. Misalnya bara api, nyala api, tubuh manusia. Sumber infra merah terbesar adalah matahari. Sinar ini memiliki sifat membawa energi panas, sehingga dengan intensitas yang tinggi bisa membakar kuli. Sifat lainnya tidak terlihat tetapi dapat menghitamkan pelat foto sehingga digunakan untuk penginderaan pada tempat gelap, kamera infra merah serta membuat foto satelit seperti yang digunakan dalam google earth.

4. Cahaya atau sinar tampak
Sinar tampak adalah satu-satunya spektrum gelombang elektromagmnetik yang dapat dilihat semuanya terdiri dari tujuh spektrum warna yaitu: merah-jingga-kuning-hijau-biru-nila-ungu. Sinar
BUNYI
Pengertian Bunyi
Gelombang Bunyi adalah salah satu bentuk energi. Energi bunyi tersebut berasal dari benda yang bergetar, getaran yang merambat disebut gelombang. Bunyi merupakan gelombang longitudinal yang merambat secara perapatan dan perenggangan terbentuk oleh partikel zat perantara serta ditimbulkan oleh sumber bunyi yang mengalami getaran.
Kita dapat mendengar bunyi karena bunyi tersebut merambat dari sumber bunyi sampai telinga kita. Sumber bunyi yang bergetar akan menggetarkan udara disekitarnya, selanjutnya molekul udara yang bergetar akan menjalar sampai telinga kita. Getaran molekul udara membentuk rapatan dan regangan.
Apabila sebuat senar gitar kita petik maka akan terjadi getaran pada senar gitar yang menimbulkan bunyi. Jika senar dawai gitar tersebut kita pegang, maka getaran dan bunyi pada senar akan hilang. Ketika beduk dipukul, atau gitar di petik, senar gitar atau beduk tampak bergetar waktu dibunyikan. Saat senar bergetar terdengarlah bunyi. Bunyi gitar akan melemah jika getarannya melemah, akhirnya bunyi pun menghilang.
Kebanyakan suara adalah merupakan gabungan berbagai sinyal, tetapi suara murni secara teoritis dapat dijelaskan dengan kecepatan osilasi atau frekuensi yang diukur dalam Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam desibel.
Syarat Terdengarnya Bunyi

Syarat terdengarnya bunyi ada 3 macam:
1.      Ada medium
Bunyi dapat merambat melalui benda gas seperti udara. Bunyi Guntur dapat kita dengar karena ada udara. Cepat rambat bunyi di udara pada suhu 200C adalah 343 m per detik.
Bunyi dapat pula merambat melalui benda cair seperti untuk mencari harta karun atau kapal yang tenggelam di dasar laut. Cepat rambat bunyi di air kira-kira 1.500 m per detik.
Selain itu, bunyi dapat merambat melalui benda padat seperti jika kita mengetuk meja dengan pensil. Cepat rambat bunyi di baja kira-kira 6.000 m per detik.
2.      Ada sumber bunyi
Semua getaran benda yang dapat menghasilkan bunyi disebut sumber bunyi. Contohnya : bunyi gong yang dipukul dan bunyi seruling yang ditiup dan sebagainya.
3.      Ada pendengar
Pendengar bunyi yaitu manusia dan hewan-hewan.
Sifat-Sifat Bunyi
Sifat-sifat bunyi meliputi :
a.       Gelombang bunyimemerlukan medium dalam perambatannya .
Karena gelombang bunyi merupakan gelombang mekanik, maka dalam perambatannya bunyi memerlukan medium. Medium atau zat perantara ini dapat berupa zat cair, padat, gas. Jadi, gelombang bunyi dapat merambat misalnya di dalam air, batu bara, atau udara.

b.      Gelombang bunyi mengalami pemantulan (refleksi)
Salah satu sifat gelombang adalah dapat dipantulkan sehingga gelombang bunyi juga dapat mengalami hal ini. Hukum pemantulan gelombang: sudut datang = sudut pantul juga berlaku pada gelombang bunyi. Hal ini dapat dibuktikan bahwa pemantulan bunyi dalam ruang tertutup dapat menimbulkan gaung.

c.    Gelombang bunyi mengalami pembiasan (refraksi).
Salah satu sifat gelombang adalah mengalami pembiasan. Peristiwa pembiasan dalam kehidupan sehari-hari misalnya pada malam hari bunyi petir terdengar lebih keras dari pada siang hari. Hal ini disebabkan karena pada pada siang hari udara lapisan atas lebih dingin daripada dilapisan bawah. Karena cepat rambat bunyi pada suhu dingin lebih kecil daripada suhu panas maka kecepatan bunyi dilapisan udara atas lebih kecil daripada dilapisan bawah, yang berakibat medium lapisan atas lebih rapat dari medium lapisan bawah. Hal yang sebaliknya terjadi pada malam hari. Jadi pada siang hari bunyi petir merambat dari lapisan udara atas kelapisan udara bawah. Untuk lebih jelasnya hal ini dapat kalian lihat pada gambar dibawah.

d.      Gelombang bunyi mengalami pelenturan (difraksi)
Gelombang bunyi sangat mudah mengalami difraksi karena gelombang bunyi diudara memiliki panjang gelombang dalam rentang sentimeter sampai beberapa meter. Seperti yang kita ketahui, bahwa gelombang yang lebih panjang akan lebih mudah didifraksikan. Peristiwa difraksi terjadi misalnya saat kita dapat mendengar suara mesin mobil ditikungan jalan walaupun kita belum melihat mobil tersebut karena terhalang oleh bangunan tinggi dipinggir tikungan.

e.       Gelombang bunyi mengalami perpaduan (interferensi).
Gelombang bunyi mengalami gejala perpaduan gelombang atau interferensi, yang dibedakan menjadi dua yaitu interferensi konstruktif (penguatan bunyi) dan interferensi
destruktif
  (pelemahan bunyi). Misalnya waktu kita berada diantara dua
buah loud-speaker dengan frekuensi dan amplitudo yang sama atau hampir sama
maka kita akan mendengar bunyi yang keras dan lemah secara bergantian
Merambat membutuhkan medium
Karakteristik Bunyi
Karakteristik Bunyi ada beberapa macam antara lain  :
·         Nada adalah bunyi yang frekuensinya teratur.
·         Desah adalah bunyi yang frekuensinya tidak teratur.
·         Timbre adalah warna bunyi,  berupa keseluruhan kesan pendengaran yang kita peroleh dari sumber bunyi, setelah dipengaruhi resonansi dan zat pengantar. Warna bunyi adalah bunyi yang frekuensinya sama tetapi terdengar berbeda.
·         Dentum adalah bunyi yang amplitudonya sangat besar dan terdengar mendadak.
Cepat Rambat Bunyi
          Cepat rambat bunyi dipengaruhi oleh jenis medium perambatannya. Medium udara, air, zat  padat dan suhu akan menghasilkan cepat rambat bunyi yang berbeda-beda.  Semakin padat suatu medium makin rapat pula partikel dalam medium dan makin kuat gaya kohesi diantara partikel medium tersebut. Sehingga suatu bagian dari medium yang bergetar akan menyebabkan bagian lain ikut bergetar secara cepat.
          Demikian pula dengan suhu suatu medium. Makin tinggi suhu suatu medium, makin cepat getaran partikel-partikel dalam medium tersebut, sehingga proses perpindahan getaran semakin cepat.
          Karena bunyi merupakan gelombang  maka bunyi mempunyai cepat rambat yang dipengaruhi oleh 2 faktor yaitu :
1.      Kerapatan partikel medium yang dilalui bunyi. Semakin rapat susunan partikel medium maka semakin cepat bunyi merambat, sehingga bunyi merambat paling cepat pada zat padat.
2.      Suhu medium, semakin panas suhu medium yang dilalui maka semakin cepat bunyi merambat. Hubungan ini dapat dirumuskan kedalam persamaan matematis (v = v0 + 0,6.t) dimana v0 adalah cepat rambat pada suhu nol derajat dan t adalah suhu medium.
Bunyi bedasarkan frekuensinya dibedakan menjadi 3 macam yaitu
·         Infrasonik adalah bunyi yang frekuensinya kurang dari 20 Hz. Makhluk yang bisa mendengan bunyii infrasonik adalah jangkrik.
·         Audiosonik adalah bunyi yang frekuensinya antara 20 Hz sampai dengan 20 kHz.
·         Ultrasonik adalah bunyi yang frekuensinya lebihdari 20 kHz. makhluk yang dapat mendengar ultrasonik adalah lumba-lumba dan kelelawar.
Bunyi merambat di udara dengan kecepatan 1.224 km/jam. Bunyi merambat lebih lambat jika suhu dan tekanan udara lebih rendah. Di udara tipis dan dingin pada ketinggian lebih dari 11 km, kecepatan bunyi 1.000 km/jam. Di air, kecepatannya 5.400 km/jam, jauh lebih cepat daripada di udara Rumus mencari cepat rambat bunyi adalah v=s:t Dengan s panjang Gelombang bunyi dan t waktu.



Pemantulan Bunyi
Pada suhu udara 15 derajat selsius bunyi dapat merambat di udara bebas pada kecepatan 340 meter per detik. Rumus cepat rambat bunyi adalah v = S/t yaitu jarak tempuh dibagi waktu tempuh. Suhu udara yang lebih panas atau lebih dingin memengaruhi kecepatan bunyi di udara. Semakin rendah suhu udara makan cepat rambat bunyi semakin cepat karena partikel udara lebih banyak.
Jenis-Jenis Bunyi Pantul Terdapat beberapa jenis bunyi pantul yaitu, gaung, dan gema
Bunyi pantul dibedakan menjadi 3 macam yaitu :
1.      Bunyi pantul memperkuat bunyi asli yaitu bunyi pantul yang dapat memperkuat bunyi asli. Biasanya terjadi pada keadaan antara sumber bunyi dan dinding pantul jaraknya tidak begitu jauh (kurang dari 10 meter)
2.      Gaung adalah bunyi pantul yang terdengar hampir bersamaan dengan bunyi asli. Biasanya terjadi pada jarak antara 10 sampai 20 meter. Sehingga bunyi asli menjadi tidak jelas. Timbulnya gaung didalam gedung sangat merugikan sehingga gaung harus diredam atau di serap, bahan yang biasa digunakan untuk dapat mencegah terjadinya gaung adalah gabus, busa,dan kapas.
3.      Gema adalah bunyi pantul yang terdengar setelah bunyi asli. Biasanya terjadi pada jarak lebih dari 20 meter. Gema terjadi jika bunyi dipantulkan oleh suatu permukaan, seperti tebing pegunungan, dan kembali kepada kita segera setelah bunyi asli dikeluarkan. Meskipun suara yang dihasilkan lebih lemah dari bunyi asli.
Kekuatan Bunyi
Bunyi  yang kuat bebeda dengan bunyi yang tinggi. Kekuatan bunyi tidak ditentukan oleh frekuensi bunyi, tetapi oleh hal-hal yang lain, khususnya; amplitudo, resonansi, dan jarak.
Amplitudo adalah lebar getar atau simpang getar yang dibuat oleh sumber bunyi. Semakin lebar getaranya, semakin kuat pula bunyinya.
Resonansi berarti ikut bergetar sejalan getaran bunyi. Biasanya dilakukan oleh benda atau bagian terdekatnya. Dan sedikit banyak kejadian ini akan menambah kekuatan getar sumberbunyi. Contoh gitar, walaupun sumber bunyinya pada senar, namun kekuatannya bunyinya lebih berasal dari kotak kayunya. Sebab, udara di dalam kotak itulah pelaku resonansi, yang justru lebih kuat daripada sumber bunyi. Sehingga kotak tersebut dinamakan kotak resonator. Namun kotak resonatornya hanya berlaku pada gitar accostic. Pada gitar elektrik resonansi dibuat oleh proses elektrik.
Jarak dimaksukan bahwa kekutan bunyi juga ditentukan oleh jarak antara sumber bunyi dengan alat pendengar atau penerima. Memakin dekat, akan semakin keras bunyinya. Sebagaimana frekuensi, kekuatan bunyi juga dapat diiukur. Biasanya digunakan satuan decibel yang disngkat db.
Angka petunjuk antara 0 db sampai kurang lebih 120 db. Sebagai bandingan; bunyi biola selembut-lembutnya yang setara dengan siulan kita lebih kurang 20 db. Sedangkan bagian kuat dari pemain orkes besar kurang lebih hanya mencapai 95 db.





Manfaat Bunyi  Dalam Kehidupan Sehari-Hari

Beberapa Manfaat adanya bunyi, antara lain :
1.      Sifat-sifat gelombang bunyi, seperti sifat pemantulan, nada, dan frekuensi ultrasonik, bermanfaat dalam kehidupan manusia. Dengan adanya tangga nada, umat manusia menjadi lebih “manusia”. Nada-nada dilantunkan sebagai ekspresi pemikiran, motivasi, dan emosi.
2.      Mendeteksi adanya tumor, menyelidiki otak, hati, dan liver, menghancurkan batu ginjal.
3.      Tentu kita pernah mendengar apa yang disebut dengan USG (Ultrasonografi) sebagai metode untuk mendeteksi janin. Walaupun penggunaan gelombang ultrasonik kalah akurat dengan sinar-X (rontgen), namun belum pernah ditemukan hingga saat ini efek samping dari penggunaan gelombang ultrasonik dibandingkan dengan penggunaan sinar-X.
4.      Penggunaan bersama-sama gelombang ultrasonik dan sifat pemantulan digunakan dalam alat yang disebut SONAR (Sound Navigating Ranging) bermanfaat untuk mengukur kedalaman laut, mendeteksi ranjau, kapal tenggelam, letak palung laut, dan letak kelompok ikan.
5.      Selain di laut, di darat pun gelombang ultrasonik dapat digunakan untuk mendeteksi kandungan minyak dan mineral dalam bumi.
6.      Pemantulam bunyi dapat digunakan untuk mengukur panjang lorong gua, atau menyelidiki kerusakan logam.
Manfaat Bunyi Dalam Teknologi
1.      Radio
Radio energi adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar. Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor lingkungan. Panjang gelombang radar berkisar antara 0.8 – 100 cm.

2.      Microwave
Panjang gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas hujan.

3.      Infrared
Kondisi-kondisi kesehatan dapat didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah, radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan menggunakan remote control.


4.      Ultraviolet
Sinar UV diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit kulit.

5.      Sinar X
Sinar X ini biasa digunakan dalam bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang terlalu lama.

6.      Alat musik
Pada alat musik seperti gitar sumber bunyinya dihasilkan oleh benda yang bergetar, yaitu senar. Jika senar dipetik dengan amplitodu (simpangan) yang besar maka bunyi yang ditimbulkan akan lebih keras. Dan jika ketegangan senar di diregangkan maka suara lengkingannya akan semakin tinggi. Begitu pula pada kendang dan alat musik yang lain. Suara timbul karena sumber suara digetarkan.

7.     Kacamata Tunanetra
Kacamata tunanetra dilengkapi dengan alat pengirim dan penerima ultrasonik memanfaatkan pengiriman dan penerimaan ultrasonik. Perhatikan bentuk kaca tuna netra pada gambar berikut.

8.      Mengukur kedalaman laut
Mengukur kedalaman laut untuk menentukan kedalaman laut (d) jika diketahui cepat rambat bunyi (v) dan selang waktu (t), pengiriman dan penerimaan pulsa adalah :

9.      Alat kedokteran
Alat kedokteran misalnya pada pemeriksaan USG (ultrasonografi). Sebagai contoh, scaning ultrasonic dilakukan dengan menggerak-gerakan probe di sekitar kulit perut ibu yang hamil akan menampilkan gambar sebuah janin di layar monitor. Dengan mengamati gambar janin, dokter dapat memonitor pertumbuhan, perkembangan, dan kesehatan janin. Tidak seperti pemeriksaan dengan sinar X, pemeriksaan ultrasonik adalah aman (tak berisiko), baik bagi ibu maupun janinnya karena pemerikasaan atau pengujian dengan ultrasonic tidak merusak material yang dilewati, maka disebutlah pengujian ultrasonic adalah pengujian tak merusak (non destructive testing, disingkat NDT). Tehnik scanning ultrasonic juga digunakan untuk memeriksa hati (apakah ada indikasi kanker hati atau tidak) dan otak. Pembuatan perangkat ultrasound untuk menghilangkan jaringan otak yang rusak tanpa harus melakukan operasi bedah otak. “Dengan cara ini, pasien tidak perlu menjalani pembedahan otak yang berisiko tinggi. Penghilangan jaringan otak yang rusak bisa dilakukan tanpa harus memotong dan menjahit kulit kepala atau sampai melubangi tengkorak kepala.


Efek Doppler
Dan dengan sedikit modifikasi, didapakan rumus umum efek Doppler :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj0gxIjRRRjx0mwRU68oJOKcOasIt6M4oVAmSCgTqnVZOreGRnMwPgutKYOa9XhDE_GMxovMbYJztUtibAFLI0KZd2R5xcjeZCXHEcdfW4e3xL-VkJdO3RPtFPn-1fwV74Roda1cZS134Ht/s1600/rumus+dopller.gif
Tanda yang atas kita pakai untuk kasus gerak relatif saling mendekati, sedangkan tanda di bawah kita pakai untuk gerak relatif saling menjauhi. Dengan memegang rumus tersebut kita dapat mengetahui adanya sistem koordinat mutlak. Akibatnya kita menjadi tahu siapa yang sebenarnya bergerak, sumber ataukah pengamat. Untuk membuktikan hal itu, saya ambil satu contoh dari buku yang ditulis oleh Kenneth Krane.
Kecepatan suara di udara adalah 340 m/s, sebuah sumber memancarkan gelombang bunyi berfrekuensi 1.000 Hz. Jika sumber dan pengamat bergerak saling dengan laju (total) 30 m/s, maka akan kita dapatkan minima tiga hasil pengukuran yang berbeda.
CAHAYA
Pengertian Cahaya
Cahaya dapat kita temui dimana-mana. cahaya bersifat gelombang dan partikel, Maxwell (1831-1874) mengemukakan pendapatnya bahwa cahaya dibangkitkan oleh gejala kelistrikkan dan kemagnetan sehingga tergolong gelombang elektomagnetik. Cahaya sendiri pada hakekatnya tidak dapat dilihat, kesan adanya cahaya apabila cahaya tersebut mengenai suatu benda. melalui
pendekatan cahaya sebagai gelombang dan partikel maka peristiwa refraksi, defraksi , dispersi, dan refleksi dapat dijelaskan dengan teori gelembang.

Sumber Cahaya
Sumber cahaya secara garis besar dibagi menjadi 2, yaitu:
1.      Cahaya Alam (Natural Ligthing)
Yang termaksud cahaya alam adalah cahaya matahari yang merupakan sumber cahaya utama dan dominan di bumi.
2.      Cahaya Buatan (Artifasial)
Cahaya buatan ini meliputi cahaya listrik, cahaya gas, lampu minyak dan lilin. Cahaya buatan ini sebagai sarana pelengkap untuk penerangan ruangan.

Sifat Cahaya
1.      Cahaya Merambat Lurus
Cahaya yang dipancarkan oleh sebuah sumber cahaya merambat ke segala arah. Bila medium yang dilaluinya homogen, maka cahaya lurus. Bukti cahaya merambat lurus tampak pada berkas cahaya matahari yang menembus masuk ke dalam ruangan yang gelap. Demikian pula dengan berkas lampu sorot pada malam hari. Berkas-berkas itu tampak sebagai batang putih yang lurus. Ketika menyentuh permukaan suatu benda maka rambatan cahaya akan mengalami dua hal, yaitu pemantulan atau pembiasan. tidak tembus cahaya, sedangkan pembiasan terjadi pada benda yang transparan atau tembus cahaya.

2.      Cahaya Dapat Dipantulkan
Kita dapat melihat benda di sekitar kita karena benda itu memantulkan cahaya. Kemudian cahaya pantulan itu masuk ke mata kita. Jelas tidaknya benda tergantung pada banyaknya cahaya yang dipantulkan oleh benda. Benda tampak berwarna merah karena benda tersebut memantulkan spektrum warna merah dan menyerap spektrum warna lain. Benda tampak hitam karena benda tidak memantulkan cahaya tetapi menyerap semua spektrum warna, sedangkan benda putih akan memantulkan semua cahaya.
Jenis pemantulan cahaya ada 2 yakni pemantulan teratur dan pemantulan baur. pemantulan teratur adalah pemantulan yang sama sudutnya dengan sinar datang dan terjadi pada benda teratur. sedangkan pemantulan baur adalah cahaya yang dipantulkan yang tersebar ke banyak arah yang berbeda dikarenakan suatu permukaan tidak teratur.
3.      Cahaya Dapat Dibiaskan
Setiap berkas cahaya yang masuk dari medium yang satu ke medium yang lain akan dibiaskan atau dibelokkan arah rambatnya disebut pembiasan atau refraksi. Besarnya pergeseran berkas cahaya yang keluar dari suatu medium bergantung pada kerapatan optik medium tersebut. Jika cahaya masuk dari zat optik kurang rapat ke zat optik lebih rapat, cahaya dibiaskan mendekati garis normal. Sebaliknya, jika cahaya masuk dari zat optic lebih rapat ke zat optik kurang rapat, cahaya dibiaskan menjauhi garis normal.
4.      Cahaya Dapat Diuraikan (Dispersi)
Dispersi cahaya merupakan peristiwa terurainya cahaya putih menjadi warna-warna spektrum. Isac Newton mengemukakan bahwa sesungguhnya cahaya putih mengandung semua dari tujuh warna yang terdapat pada pelangi. Berdasarkan urutan penurunan panjang gelombang, maka warna-warna yang seharusnya kamu lihat pada pelangi adalah merah, jingga, kuning, hijau, biru, nila, dan ungu.
  
Fotometri
Fotometri ialah ilmu yang mempelajari tentang pengukuran kwantita cahaya. Ada beberapa kwantitas cahaya yaitu:
            a.       Kuat/ Intensitas Cahaya (I)
Kuat cahaya merupakan jumlah arus cahaya yang dapat dipancarkan dari sumber cahaya tiap satuan sudut ruang. Satuan kuat cahaya adalah Iilin(I)/ candela (Cd). Satu iilin internasional ialah kuat cahaya yang memberikab cahaya sebanyak 1/20 kali banyaknya cahaya yang dipancarkan oleh 1cm2 platina pada titik lebur.
           b.      Arus Cayaha (Fluks Cahaya=F)
Banyaknya tenaga cahaya yang dipancarkan dari sumber cahaya tiap satu satuan waktu. satuan arus cahaya adalah Lumen (Lm) yang didefinisikan sebagai satuLumenadalah arus cahaya yang dipancarkan dari sumber cahaya sekuat 1 kandela steradial. atau arus cahaya yang dipancarkan dari sumber cahaya yang menubus bidang serluad 1 m2 dari kulit bola yang berjari-jari 1m di mana pusat bola terdapat 1 Iilin internasional.
           c.       Kuat Penerangan (E)
Jumlah arus cahaya tiap satuan luas. satuan penarangan adalah Luks, satu Luks didefinisikan sebagai kuat penerangan bidang yang tiap 1m2 bidang tersebut menerima arus cahaya 1 Lumen.
Jika arus cahaya (F) menerangi merata suatu bidang seluas A m2 maka kuat penerangan bidang tersebut sebesar: E= .
            d.      Terang Cahaya (E)
Besar kuat cahaya tiap cm2 dari luas permukaan sumber cahaya yang dilihat (kalua sumber cahaya berupa bola maka luas permukaanya dapat dilihat berupa luas lingkaran).

Rumus: e = I/A

Apabila ada 2 bola lampu yang berpijar mempunyai kuat cahya yang sama tetapi lampuyang kecil kelihatan lebih terang dari pada lampu yang besar. Dalam Hal ini dikatakan terang cahaya (e) lampu kecil lebih terang dari pada lampu yang besar.

Alat Pengukur Cahaya
Alat Pengukur Kuat Cahaya
·         Fotometer Sederhana
Terdiri dari sebuah kertas ditengah-tengah terdapat bintik minyak. Bintik minyak yang mendapat cahaya lebih terang dari satu pihak akan terlihat lebih tua dari pada sekelilingnya dan lebih mudah tembus cahaya dari pada sekelilingnya. Sedangkan kalau kedua belah pihak mendapat penerangan yang sama kuat, bintik minyak ini tidak dapat dibedakan sekelilingnya. Fotometer ini dipindah-pindahkan/digeser-geser diantara dua sumber cahaya di mana salah satu I-nya telah diketahui.
Maka:
                                     I1               I2
                                =
                                                R12           R22

·         Fotometer Buatan Lummer Dan Brodhun
Melalui fotometer ini mata sekaligus dapat melihat bidang B kanan dan kiri yang mendapat penyinaran dari sumber cahaya I1 dan I2.
Luks meter biasanya dipakai untuk menentukan waktu oxposure (pencahayaan) sedangkan waktu pencahayaan berbanding terbalik dengan kuat penerangan bidang. Dengan mempergunakan luks meter maka diperoleh data kuat penerangan, yaitu:
1.      Cahaya matahari 100.000 luks.
2.      Lampu-lampu gedung bioskop 50.000 luks.
3.      Ruangan aula 300 luks.
4.      Ruangan membaca 150 luks.
5.      Bulan purnama 0,2 luks.
6.      Bintang malam hari 0,003 luks.
Ruangan membaca mempunyai kuat penerangan 150 luks agar tidak merusak kesehatan mata dan tidak cepat lelah.

Alat Pengukur Kuat Peneranga Cahaya Yakni Luks Meter
Di dalam alat ini terdapat foto sel yang hanya menghasilkan listrik kalau dijatuhi cahaya.

Penggunaan Sinar Dalam Bidang Kedokteran
Sinar sangat berguna dalam bidang kedokteran baik sebagai pembantu dalam memperoleh informasi maupun terapi. Demikian pula sinar berkaitan dengan ketajaman penglihatan. Sebagai contoh, lampu operasi. Lampu ini dipakai pada waktu operasi: dengan bantuan cermin cekung untuk  memperoleh sinar yang benderang. Di bawah ini akan dibahas penggunaan sinar menurut panjang gelombang.
Sinar Tampak
Sinar tampak digunakan untuk mengetahui secara langsung apakah bagian-bagian tubuh baik luar maupun dalam mengalami suatu kelainan; untuk itu dapat diperinci sebagai berikut:
1.      Transilluminasi
Transilluminasi yaitu transmisi cahaya melalui jaringan tubuh untuk mengetahui apakah ada gejala hidrosefalus ( kepala mengandung cairan oleh karena belum sempurna pembentukan tulang tengkorak) atau ada kelainan di dalam tubuh. Cahay yang masuk itu akan dihamburkan sedemikian rupa sehingga membentuk cahaya yang spesifik. Selain transilluminasi dipergunakan untuk menentukan pneumetoraks, kelainan testes dan payudara.
2.      Endoskop 
Alat yang dipergunakan untuk melihat ruang di dalam tubuh. Alat ini terdiri dari fiberglas, lampu. Sinar-sinar yang melalui fiberglas akan dipantulkan secara sempurna sehingga gambaran di dalam tubuh dapat terlihat dengan mudah. Di samping itu sifat fiberglas mudah dibengkokkan.
3.      Sistoskop
Prinsip sama dengan endoskop. Alat ini dipergunakan untuk melihat struktur di dalam kandung kencing.
4.      Protoskop
Prinsip sama dengan endoskop, diperuntukan melihat struktur rektum (dubur
5.      Bronkhoskop
Alat ini untuk melihat bronkus paru-paru.

Ungu Ultra
Sinar ungu ultra mempunyai efek fisik, kimia dan biologis, di samping itu sinar ungu ultra dipakai untuk sterilisasi oleh karena mempunyai sifat bakterisid. Sinar ungu ultra mempunyai efek terhadap kulit yaitu dalam hal pembentukan vitamin D. Demikian pula ungu ultra dapat menyebabkan kulit kemerah-merahan (erithema), dengan mempergunakan sifat ini maka telah ada usaha untuk mengobati penderita vitiligo (kulit  putih), selain itu menyebabkan edema kulit, pigmentasi (melanin kulit) dan pembentukan vitamin D. Terhadap mata menyebabkan foto keratitis dan katarak pada lensa mata dan cairan mata bisa mengalami fluoresen yang bersifat sementara tanpa perubahan patologis.
Untuk mengatasi penderita artritis yaitu dengan memakai lampu kromayer. Ungu ultra dapat diperoleh dari sinar matahari, tekanan rendah lampu merkuri, lampu matahari/sun lamp, dan lampu cahaya hitam yang kesemuanya itu merupakan emisi rendah. Ada sumber ungu ultra yang emisi tinggi yaitu lampu gas merkuri dengan tekanan tinggi, arkus xenon dengan tekanan tinggi.
Spektrum ungu ultra dari masing-masing lampu sebagai berikut.
1.      Lampu merkuri tekanan rendah (253 nm).
2.      Lampu merkuri  tekanan tinggi (200-230 nm).
3.      Lampu fluoresen (lebih besar dari 320 nm).
4.      Lampu cahaya hitam (336).

Merah Infra
Merah infra dihasilkan oleh lampu berfilter merah dengan daya 250 watt, 750 watt, sinar matahari, emisi lampu pijar, lampu fluoresen dan temperatur tinggi komponen listrik.

Kegunaan akan merah infra:
1.      Sebagai diameter pada penderita artritis.
2.      Emisi infra merah fotografi di mana radiasi yang dipancarkan oleh tubuh kemudian ditangkap/dideteksi sebagai thermogram.
3.      Reflective infra red phoography yaitu menggunaka panjang gelombang 700-900 nm, untuk menunjukkan aliran vena pada kulit.
4.      Juga dipergunakan untuk fotografi terhadap pupil mata tanpa suatu rangsangan.

Sinar biru
Energi sinar diserap oleh molekul tertentu secara selektif. Berdasarkan sifat ini maka pada tahun 1958telah diusahakan fototerapi dengan sinar biru (-450 nm) terhadap penderita penyakit kuning. Alat ini dapat membangkitkan panjang gelombang yang dikehendaki (biru, merah, kuning, dan hijau) kemudian mempergunakan electrode diletakkan pada penderita untuk pengobatan berbagai penyakit.

Laser
Laser adalah singkatan dari kata light amplification by stimulated emission of radiaton. Yang berarti menghasilkan sumber cahaya dengan intensitas yang besar dan fase koheren. Sinar laser merupakan sumber cahaya yang diemisi sebagai berkas cahaya yang monokhromatis yang masing – masing gelombang dalam satu fase bersama – sama dengan berkas cahaya lainnya yang berdekatan ( cahaya koheren ) dan paralel.
Sinar laser dimanfaatkan pada bidang medis. Pada beberapa penyakit mata, sinar laser digunakan secara rutin untuk koagulasi darah yang memblokir pembuluh darah vena. Dalam penggunaan sinar laser sebagai foto koagulasi harus diketahui minimum reaktif dose ( MRD) misalnya MRD untuk penembakan pada retina sebesar 50 um yaitu kira – kira 2,4 mJ selam 0,25 detik. Unutk foto koagulasi penyinaran dapat 10 – 50 kali MRD dengan penembakan dalam waktu 0,25 detik. Selain penggunaan laser sebagai foto koagulasi, laser juga dipakai untuk memperoleh bayangan tiga dimensi yang dikenal sebagai “ Holography “ kadang kala laser juga digunakan pula untuk pengobatan pada beberapa tipe kanker.
Selain mempunyai manfaat, penggunaan laser juga mempunyai akibat. Akibat dari penggunaan laser tersebut, yaitu mengakibatkan kerusakan pada jaringan yang terjadi oleh karena menggunakan sinar laser pada jaringhan mencapai temperature 1000C.

Macam-macam Laser
Berdasarkan material pembentukan laser maka dikenal bermacam-macam laser, yaitu:
1.      Laser p-n Junction
Belum banyak digunakan, beroperasi pada daerah merah dengan kepadatan arus 103 A/cm2 atau lebih, serta pulsa 10-100 ns ( nano second)
2.      Laser He-Ne
Beroperasi pada daerah merah dengan spectrum 633 nm. Laser ini bekerja melalui suatu tekanan yang rendah serupa dengan neon dengan daya 100 mW.
3.      Laser Argon
Memberikan tingkat daya kontinyu yang tinggi (1-15 W) dengan spektrum 515 nm. Kegunaannya : untuk foto coagulase pembuluh darah di dalam mata penderita yang mengalami diabetes retinophaty.
4.      Laser CO2
Member daya 50-500 W. dipakai untuk memotong plastik logam setebal 1 cm.
5.      Laser Solid State
Ada dua macam yaitu:
1.      Laser rubi (ImJ) bekerja dengan spektrum 693 nm pada daerah merah.
2.      Laser (Nd: YAG) mempenyai daya 2 W/mm dengan spektrum 1.064 nm pada daerah merah infra.

Penggunaan Laser
a.       Pada beberapa penyakit mata, sinar laser digunaka secara rutin untuk koagulasi darah dan memblokir pembuluh darah vena.
Dalam penggunaan sinar laser sebagai foto koagulasi harus diketahui minimal reaktif dose (MRD) misalnya MRD untuk penembakan pada retina sebesar 50 um yaitukira-kira 2,4 mJ selama 0,2 detik. Untuk foto koagulasi penyinaran dapat 10 sampai 50 kali MRD (misalnya 24 sampai 120 mJ untuk 50 um), dengan penembakan dalam waktu 0,25 detik.
b.       Selain penggunaan laser sebagai foto koagulasi laser juga dipakai untuk memperoleh bayangan tiga dimensi yang dilakukan sebagai “holography”.
c.       Kadangkala laser digunakan pula untuk pengobatan pada beberapa tipe kanker.

ALAT OPTIK
Alat-Alat Optik
Benda optik/alat optik adalah benda yang menggunakan lensa optik untuk melakukan fungsinya dalam membantu kegiatan tertentu. Lensa optik bisa terbuat dari bahan kaca, plastik, fiber, dan lain sebagainya. Berikut di bawah ini merupakan arti definisi / pengertian dari beberapa benda / alat optik yang sering kita jumpai dalam kehidupan sehari-hari

Beberapa alat optik antara lain kamera, lup, mikroskop, teleskop, proyektor, dan episkop.
1. Kamera
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEicz9y49zRxKQ4nmfs_h7T6G8jKHjQkxFmImrupH9x0d0wkF8UaGpo1KQrF3j1Dg61-zm54QapXnFxlptFv6HJ_-oQ42w-kf5m_ZjaiK7zyZM2jqaDK1MDvigq3y1Kikgqh_viB0PfrlFQ1/s1600/untitled.bmp
Apakah kamera? Bagaimana prinsip kerja kamera? Untuk mengetahui kerja kamera, perhatikan bagian-bagian utama dari kamera.
Order gambar kamera dan pembentukan bayangan pada kamera Aperture berfungsi mengatur diafragama, sedangkan diafragma berfungsi mengatur banyak sedikitnya cahaya yang masuk ke kamera.

Pada kamera terdapat sebuah lensa cembung untuk membiaskan sinar dari benda himgga bayangan jatuh di film sebagai layer. Benda yang akan dipotret ditempatkan pada jarak lebih besar dari 2f (2 kali jarak titik api) di depan lensa. Ingatkah di mana bayangan benda akan didapatkan dan bagaimana sifat-sifat bayangan itu? Tentu saja bayangan akan jatuh antara f dan 2f yang memiliki sifat diperkecil, nyata, dan terbalik.
Bagaimanakah kesamaannya dengan mata?
Prinsip kerja kamera dan mata adalah sama. Apabila mata melihat benda, sinar dari benda yang masuk ke mata dibiaskan lensa mata. Bayangan jatuh di layer mata atau retina. Sifat bayangan yang terjadi nyata, diperkecil, dan terbalik. Tersusun dari apakah pelat film itu? Pelat film berupa selluloid. Pelat itu dilapisi perak bromide dan sangat peka terhadap cahaya. Apabila bayangan objek mengenai pelat film akan tercetak sebagai gambar negative. Setelah proses pencucian, film dapat dicetak sebagai gambar positif pada kertas foto.

2. Mata
a. Lensa Mata sebagai Alat Optik
Bentuk mata menyerupai bola. Pada bola mata terdapat benda bening yang disebut lensa mata. Lensa mata bersifat tembus cahaya.Apa jenis lensa mata? Apa pula fungsi lensa mata itu? Lensa mata berupa lensa cembung. Lensa mata memiliki fungsi membiaskan sinar-sinar yang datang ke mata. Dengan demikian, bayangan benda dapat tepat jatuh di retina mata. Jadi, mata memiliki fungsi seperti pada kamera. Oleh karena itu, mata disebut alat optik.
b. Proses Terjadinya Bayangan pada Retina
Apakah fungsi pupil, retina, dan bintik kuning? Bagaimana proses melihat benda itu terjadi? Pupil adalah bagian mata yang berfungsi mengatur besar kecilnya cahaya yang masuk ke bola mata. Retina adalah selaput tipis di bagian belakang bola mata. Lapisan itu paling banyak mengandung saraf penglihatan. Fovea atau bintik kuning adalah bagian retina, tempat berkumpulnya ujing-ujung saraf penglihatan sehingga paling peka terhadap rangsang (impuls) cahaya.
Syarat kita dapat melihat benda adalah harus ada cayaha. Cahaya dapat berasal langsung dari sumber cahaya atau berasal dari cahaya yang dipantulkan oleh benda-benda yang ada di sekeliling kita. Cahaya masuk menembus kornea, terus melewati lensa mata, dan akhirnya sampai ke retina. Bayangan benda jatuh tepat di bintik kuning, bersifat nyata, terbalik, dan diperkecil. Bayangan itu merupakan rangsangan atau informasi yang dibawa oleh syaraf penglihatan menuju pusat syaraf penglihatan di otak. Di otak, rangsangan ditafsirkan dan barulah kemudian kita mendapat kesan melihat benda.

Bagaimanakah cara lensa mata mengatur agar bayangan benda tepat jatuh di retina?
Lensa mata mengatur penyesuaian terhadap jarak benda dengan jalan mengatur cembung dan pipihnya lensa sehingga bayangan jatuh di retina. Proses itu disebut berakomodasi. Apabila jarak benda sangat dekat, lensa akan mencembung. Sebaliknya, apabila jarak benda jauh, lensa mata akan memipih.
Lensa mata dalam keadaan secembung-cembungnya, dikatakan berakomodasi maksimum. Sebaliknya, lensa mata dalam keadaan sepipih-pipihnya, dikatakan berakomodasi minimum atau tidak berakomodasi.
c. Batasan Penglihatan
Apakah ada batasannya penglihatan mata itu? Penglihatan mata berada antara titik dekat dan titik jauh.

1) Titik dekat(punctum proximum), adalah titik terdekat yang masih dapat dilihat dengan jelas apabila lensa mata berakomodasi maksimum atau lensa mata secembung-cembungnya. Pada waktu berakomodasi maksimum, oto-otot silliaris atau otot-otot lensa mata bekerja sekuat-kuatnya agar lensa mata dalam keadaan secembung-cembungnya. Keadaan seperti itu menyebabkan kelelahan mata. Daya akomodasi maksimum pun terbatas. Semakin dekat benda dengan mata, semakin kuat lensa mata harus dicembungkan, sampai suatu saat tidak mampu lagi untuk dicembungkan. Hal itu terjadi apabila bendanya berada di titik dekat. Apabila bendanya didekatkan lagi melewati batas titik dekat, penglihatan kita akan semakin kabur.
Kemampuan otot-otot lensa mata untuk bekerja dipengaruhi usia seseorang. Pada usia anak-anak otot lensa mata sangat kuat untuk mencembungkan lensa mata. Oleh karena itu, anak-anak mampu melihat benda-benda yang sangat dekat jaraknya. Pada orang dewasa otot-otot lendsa matanya semakin lemah sehingga jarak punctum proximumnya makin jauh.
Pada mata emetrop atau mata normal anak-anak, jarak punctum proximumnya antara 10 cm sampai 15 cm, sedangkan pada orang dewasa antara 20 cm sampai 30 cm.

2) Titik jauh (punctum remotum), adalah titik terjauh yang masih dapat dilihat jelas oleh mata tanpa berakomodasi. Pada waktu lensa mata tidak berakomodasi (dalam keadaan sepipih-pipihnya), berkas-berkas sinar sejajar berkumpul di retina. Keadaan ini terjadi jika mata sedanng beristirahat atau mata melihat benda yang letaknya jauh sekali. Oleh karena itu punctum remotum mata normal berada di tempat yang jauh tak terhingga.

d. Cacat Mata
Apakah kalian tau bagaimanakah cacat mata itu dan apakah sebenarnya cacat mata itu? Apakah kalian pernah mengalami ganguan pada penglihatan kalian? Gangguan ini terjadi kemungkinan karena menurunnya daya akomodasi, tidak meratanya kelengkungan lensa mata, dan terjadinya pengapuran pada lapisan kornea. Mata yang sudah mengalami kelainan ini disebut cacat mata.
Bagaimana agar orang yang menderita cacat mata dapat melihat benda secara normal kembali? Jawabannya adalah penderita cacat mata harus dibantu dengan menggunakan kaca mata. Kaca mata apakah yang tepat untuk penderita yang tidak dapat melihat benda pada jarak dekat, atau sebaliknya tidak dapat melihat benda pada jarak yang jauh?

MIOP (Rabun Jauh)
Pernahkan kalian bertemu dengan orang yang tidak dapat meelihat benda-benda yang letaknya jauh? Miop terjadi karena letak punctum remotum dan puctum proximumnya bergeser mendekati mata, lebih dekat dari pada mata normal. Hal ini terjadi karena bentuk bola mata terlalu lonjong ke belakang sehingga berkas-berkas cahaya sejajar sumbu utama berasal dari punctum remotum. Jika tidak berakomodasi, berkas cahaya itu akan mengumpul di suatu titik di depan retina.
Bagaimana agar berkas cahaya mengumpul tepat di retina? Kalian ingat bahwa lensa cekung berfungsi memancarkan cahaya sehingga berkas cahaya yang melewati bidang lensa mata lebih besar, sehingga titik potong sinar biasnya tidak didepan retina lagi tetapi mundur tepat di retina. Oleh sebab itu penderita miop harus menggunakan kaca mata negative (lensa cekung).
Hipermotropi (Rabun dekat)
Gambar mata hipermetrop Hipermetrop adalah cacat mata yang tidak dapat melihat benda-benda yang letaknya dekat. Orang yang menderita hipermiop mempunyai bentuk bola mata terlalu pendek atau lensa mata terlalu pipih, sehingga berkas vahaya sejajar sumbu utama. Pada penderita ini letak punctum proximum bergeser menjauhi mata. Jika mata tidak berakomodasi, berkas cahaya itu akan mengumpul di suatu titik di belakang retina. Perhatikan gambar berikut.
Bagaimana agar berkas cahaya dapat dikumpulkan kembali tepat di retina? Pada bab cahaya kalian sudah mempelajari bahwa sifat lensa cembung berfungsi konvergen atau mengumpulkan berkas cahaya. Sehingga berkas cahaya akan sejajar sumbu utama dan akan melewati bidang lensa mata lebih sempit. Akibatnya titik potong sinar biasnya tidak lagi berpotongan di belakang lensa, tetapi maju tepat di retina. Oleh sebab itu penderita hipermiop dapat ditolong dengan kaca mata positif.

Astigmatisma (mata silindris)/ Presmiob
Astigmatisma disebabkan karena kornea mata tidak berbentuk sferik (irisan bola), melainkan lebih melengkung pada satu bidang dari pada bidang lainnya. Akibatnya benda yang berupa titik difokuskan sebagai garis. Mata astigmatisma juga memfokuskan sinar-sinar pada bidang vertikal lebih pendek dari sinar-sinar pada bidang horisontal.Astigmatisma ditolong/dibantu dengan kacamata silindris.
Apakah kalian masih mempunyai nenek dan kakek? Usia mereka sudah sangat tua dan kekuatan mata mereka akan semakin melemah tidak seperti waktu mereka masih muda. Apakah kalian tahu jenis cacat mata yang diderita kakek dan nenek kalian?
Orang-orang yang sudah lanjut usia mengalami gangguan penglihatan terhadap benda-benda yang letaknya dekat maupun terlalu jauh. Sebenarnya gangguan ini bukan masuk golongan cacat mata. Pada usia tua, otot-otot lensa mata telah mengendur sehingga daya akomodasinya berkurang. Jarak bacanya tidak lagi 25 cm seperti halnya pada mata normal, tetapi lebih jauh lagi. Biasanya orang yang sudah tua membaca tulisan dengan dijauhkan dari matanya.
Penderita prebiop dapat ditolonng dengan kaca mata berlensa rangkap, yaitu lensa cembung dan lensa cekung dalam satu lensa. Bagian atas cekung untuk melihat benda yang jauh dan bagian bawah cembung untuk membaca.
Cobalah kalian sebutkan alat-alat apasaja disekitar kalian yang termasuk alat optik? Biasanya alat alat optik yang ada diciptakan oleh manusia untuk membantu kerja mereka. Seperti lup (kaca pembesar), mikroskop, teleskop, dan proyektor.
3.Lup
Adalah Lensa positif yang digunakan untuk mengamati benda-benda yang kecil agar tampak lebih besar dan lebih jelas. Alat ini biasa digunakan oleh tukang arloji pada waktu mereparasi kerusakan jam tangan. Perajin perhiasan emas dan perak juga menggunakan alat ini untuk memperoleh hasil yang lebih baik.
Cara menggunkan lup adalah sebagai berikut.
1) Untuk mata berakomodasi maksimum, benda diletakkan diantara F dan O atau ajarak benda (so) selalu lebih kecil daripada jarak titik api (f).
2) Untuk mata tidak berakomodasi, benda diletakkan tepat pada titik api (f) atau jarak benda (so) sama dengan jarak titik api lup (f).
Jika mata berakomodasi maksimum, jarak bayangan benda di titik dekat punctum proximum atau pada jarak baca normal adalah 25 cm. Bayangan yang terjadi maya, si = -25 cm maka berdasarkan persamaan pada lensa:

Persamaan perbesaran lup
Pembesaran bayangan saat mata berakomodasi maksimum
Dengan ketentuan:
M  = Pembesaran
Sn = Titik dekat (cm)
f     = Fokus lup (cm)
Pembesaran bayangan saat mata tidak berakomodasi
Dengan ketentuan:
M  = Pembesaran
Sn = Titik dekat (cm
f    = Fokus lup (cm)

4.Mikroskop
Mikroskop Compound dibuat oleh John Cuff pada 1750
Mikroskop (bahasa Yunani: micros = kecil dan scopein = melihat) adalah sebuah alat untuk melihat objek yang terlalu kecil untuk dilihat dengan mata kasar. Ilmu yang mempelajari benda kecil dengan menggunakan alat ini disebut mikroskopi, dan kata mikroskopik berarti sangat kecil, tidak mudah terlihat oleh mata.
Jenis-jenis mikroskophttp://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Mikroskop digital yang bisa tersambung dengan komputer
Jenis paling umum dari mikroskop, dan yang pertama diciptakan, adalah mikroskop optis. Mikroskop ini merupakan alat optik yang terdiri dari satu atau lebih lensa yang memproduksi gambar yang diperbesar dari sebuah benda yang ditaruh di bidang fokal dari lensa tersebut.
Berdasarkan sumber cahayanya, mikroskop dibagi menjadi dua, yaitu, mikroskop cahaya dan mikroskop elektron. Mikroskop cahaya sendiri dibagi lagi menjadi dua kelompok besar, yaitu berdasarkan kegiatan pengamatan dan kerumitan kegiatan pengamatan yang dilakukan. Berdasarkan kegiatan pengamatannya, mikroskop cahaya dibedakan menjadi mikroskop diseksi untuk mengamati bagian permukaan dan mikroskop monokuler dan binokuler untuk mengamati bagian dalam sel. Mikroskop monokuler merupakan mikroskop yang hanya memiliki 1 lensa okuler dan binokuler memiliki 2 lensa okuler. Berdasarkan kerumitan kegiatan pengamatan yang dilakukan, mikroskop dibagi menjadi 2 bagian, yaitu mikroskop sederhana (yang umumnya digunakan pelajar) dan mikroskop riset (mikroskop dark-field, fluoresens, fase kontras, Nomarski DIC, dan konfokal).
Struktur mikroskop
Ada dua bagian utama yang umumnya menyusun mikroskop, yaitu:
  • Bagian optik, yang terdiri dari kondensor, lensa objektif, dan lensa okuler.
  • Bagian non-optik, yang terdiri dari kaki dan lengan mikroskop, diafragma, meja objek, pemutar halus dan kasar, penjepit kaca objek, dan sumber cahaya.
Pembesaran
Tujuan mikroskop cahaya dan elektron adalah menghasilkan bayangan dari benda yang dimikroskop lebih besar. Pembesaran ini tergantung pada berbgai faktor, diantaranya titik fokus kedua lensa( objektif f1 dan okuler f2, panjang tubulus atau jarak(t) lensa objektif terhadap lensa okuler dan yang ketiga adalah jarak pandang mata normal(sn). Rumus: \ {Vm} =  \frac { t.sn }{f_1.f_2}
 Sifat bayangan
Baik lensa objektif maupun lensa okuler keduanya merupakan lensa cembung. Secara garis besar lensa objektif menghasilkan suatu bayangan sementara yang mempunyai sifat semu, terbalik, dan diperbesar terhadap posisi benda mula-mula, lalu yang menentukan sifat bayangan akhir selanjutnya adalah lensa okuler. Pada mikroskop cahaya, bayangan akhir mempunyai sifat yang sama seperti bayangan sementara, semu, terbalik, dan lebih lagi diperbesar. Pada mikroskop elektron bayangan akhir mempunyai sifat yang sama seperti gambar benda nyata, sejajar, dan diperbesar. Jika seseorang yang menggunakan mikroskop cahaya meletakkan huruf A di bawah mikroskop, maka yang ia lihat adalah huruf A yang terbalik dan diperbesar.

5.Teleskophttp://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png

Teleskop atau teropong adalah instrumen pengamatan yang berfungsi mengumpulkan radiasi elektromagnetik dan sekaligus membentuk citra dari benda yang diamati[1]. Teleskop merupakan alat paling penting dalam pengamatan astronomi. Jenis teleskop (biasanya optik) yang dipakai untuk maksud bukan astronomis antara lain adalah transit, monokular, binokular, lensa kamera, atau keker. Teleskop memperbesar ukuran sudut benda, dan juga kecerahannya.
Galileo diakui menjadi yang pertama dalam menggunakan teleskop untuk maksud astronomis. Pada awalnya teleskop dibuat hanya dalam rentang panjang gelombang tampak saja (seperti yang dibuat oleh Galileo, Newton, Foucault, Hale, Meinel, dan lainnya), kemudian berkembang ke panjang gelombang radio setelah tahun 1945, dan kini teleskop meliput seluruh spektrum elektromagnetik setelah makin majunya penjelajahan angkasa setelah tahun 1960.
Penemuan atau prediksi akan adanya pembawa informasi lain (gelombang gravitasi dan neutrino) membuka spekulasi untuk membangun sistem deteksi bentuk energi tersebut dengan peranan yang sama dengan teleskop klasik. Kini sudah umum untuk menyebut teleskop gelombang gravitasi atau pun teleskop partikel berenergi tinggi.

6.Periskop
Periskop adalah alat optik yang dipasang pada kapal selam. Periskop digunakan untuk mengintai kapal-kapal musuh atau melihat benda-benda di atas permukaan laut sewaktu kapal selam sedang menyelam. Periskop yang sederhana terdiri atas lensa objektif, 2 buah prisma siku-siku dan lensa okuler.
Berkas sinar yang berasal dari sebuah kapal, setelah menembus lensa objektf L1 dipantulkan sempurna oleh prisma-prisma siku-siku sama kaki P1 dan P2. Berkas sinar ini akhirnya menembus lensa okuler L2 masuk ke mata pengamat.
7.proyektor
Pico Projector merupakan Proyektor yang paling kecil yang pernah ada di dunia. Karena komponen dari alat ini sangatlah sederhana yang hanya terdiri dari 3 laser utama yang menggunakan tekonologi laser LED, kemudian MEMS CHIP , optik dan elektronika lainnya. Bila proyektor biasa (konvensional ) menggunakan jutaan cermin yang tersusun dalam sebuah cip (digital micromirror devices) untuk membentuk sebuah gambar, tetapi PicoP ini hanya memproyeksikan satu cermin berukuran mikroskopis saja yang tersusun dalam sebuah Chip
MEMS(micro-electro-mechanical-system).





CERMIN DAN LENSA
Cermin Datar
Sejalan dengan namanya, cermin datar adalah cermin yang berbentuk rata (tidak lengkung). Cermin datar banyak digunakan untuk berhias maupun dijadikan komponen alat-alat tertentu seperti periskop dan peralatan yang lainnya. Sifat bayangan yang dibentuk oleh cermin datar adalah maya, tegak, dan sama besar.
Bayangan yang dibentuk oleh 2 cermin datar dengan sudut lancip
cermin datarJika sobat punya dua cermin datar yang membentuk sudut lancip (θ) maka jumlah bayangan benda (n) yang dibentuk oleh cermin tersebut dapat dicari dengan rumus berikut
n = (\frac{360^{o}}{A}-m)dengan ketentuan jika
360/A = GENAP, maka m = 1
360/A = GANJIL, maka m = 0
Contoh Soal Cermin Datar 1
Sobat punya dua cermin datar yang membentuk sudut 60º dan meletakkan korek api di muka cermin tersebut, berpakah bayangan korek api yang terbentuk dari cermin datarbtersebut?
n = (\frac{360^{o}}{A}-m)
n = 360º/60º – 1 (m bernilai 1 karena 360/60 hasilnya genap)
n = 5 buah bayangan
Sobat hitung mungkin sering menjumpai soal cermin datar seperti ini, Jika si A tingginya x cm, maka berapa tinggi cermin datar minimal agar si A bisa melihat seluruh tubuhnya di cermin datar tersebut? untuk mencari tinggi cermin datar nya menggunakan rumus
Tinggi Cermin Datar = 1/2 x Tinggi Benda
contoh soal cermin datar 2
Tinggi Mahmud 178 cm, berapa tinggi cermin yang dibutuhkan agar ia bisa
melihat seluruh tubuhnya di dalam cermin?
jawab : Tinggi Cermin Datar = 1/2 x 178 = 69 cm
Cermin Cekung
Kalau cermin datar bentuk permukaannya datar, Cermin cekung bentuknya lengkung teratur ke dalam. Cermin cekung mempunyai fokus positif.
Sifat Cermin Cekung
Sifat bayangan yang dibentuk oleh  cermin cekung tergantung dari posisi bendanya. Bagaimana menentukan sifat bayangan benda di cermin cekung? Berikut rangkuman singkatnya
  1. Jumlah ruang letak benda dan letak bayangan selalu = 5
  2. Jika ruang bayangan > ruang benda maka sifat bayangannya diperbesar.
  3. Jika ruang bayangan < ruang benda maka sifat bayangannya diperkecil
  4. Hanya bayangan di ruang 4 yang bersifat maya dan tegak selebihnya bersifat nyata dan terbalik
Sifat Cahaya (sinar) yg dipantulkan Cermin Cekung
1. Sinar datang yang sejajar dengan sumbu utama akan dipantulkan melalui fokus
http://rumushitung.com/wp-content/uploads/2013/03/sinar-istimewa-cermin-cekung-1.png
2. Sinar datang yang melewati fokus akan dipantulkann sejajar dengan sumbu utama.
sinar istimewa cermin cekung 3
3. Sinar datang yang melalui titik lengkung (R) akan dipantulkan kembali ke arah yang sama.
sinar istimewa cermin cekung 2
Rumus Cermin Cekung

Cermin Cekung berfokus positif. Jika sobat mempunyai benda dengan jarak S dari cermin maka untuk mencari jarak bayangannya menggunakan rumus
\frac{1}{f}= \frac{1}{s}+\frac{1}{s'}f = fokus cermin
s = jarak benda dari cermin
s’ = jarak bayangan
sedangkan perbesaran bayangannya menggunakan rumus
http://rumushitung.com/wp-content/uploads/2013/03/rumus-perbesaran-cermin.gifs = jarak benda dari cermin
s’ = jarak bayangan
h’ = tinggi bayangan
h = tinggi benda
Manfaat Cermin Cekung di Kehidupan Sehari-hari
Pemanfaatan cermin cekung cukup banyak diantaranya
  • Digunakan sebagai pemantul pada lampu mobil atau berbagai lampu sorot yang lain
  • pemntul pada lampu senter
  • Sebagai antena parabola penerima sinyal radio
  • Sebagai pengumpul sinar matahari pada Pembangkit Listrik Tenaga Surya
Cermin Cembung
Cermin cembung bentuknya cembung atau lengkung ke luar. Kalau sobat hitung punya perut buncit mirip dengan itu :D. Kalau sobat lihat kaca spion motor atau mobil, itulah contoh cermin cembung. Cermin cembung fokusnya bernilai negatif. Jadi dalam perhitungan matematisnya nanti f selalu bernilai
negatif. Sifat bayang yang dibentuk cermin cembung selalu maya, tegak, dan diperkecil.
Sifat Sinar yang dipantulkan cermin cembung
1. Sinar datang yang sejajar sumbu utama akan dipantulkan seolah-olah dari fokus
sinar istimewa cermin cembung 1
2. Sinar datang yang menuju R akan dipantulkan kembali dari R
sinar istimewa cermin cembung 3
3. Sinar datang yang menuju titik fokus akan dipantulkan sejajar dengan sumbu utama
sinar istimewa cermin cembung 2
Rumus Cermin Cembung
Rumus atau persamaan cermin cembung mirip seperti cermin cekung hanya saja nilai fokusnya (F) negatif. Untuk rumus perbesaran cermin cembung sama seperti cermin cekung.
rumus cermin cembung
LISTRIK
Pengertian Listrik
Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:
·         Listrik adalah kondisi dari partikel sub atomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.
·         Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.
Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi - aplikasi industri seperti elektronik dan tenaga listrik.
B.     Sifat-sifat Listrik
Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frase "jumlah listrik" digunakan juga dengan frase "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.
Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".
Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).
Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik.
Tanda muatan listrik
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjuhDNmHHA3nGGL70KsdQk-uznyPa_NnjQ-WSCEPo0dJFx7eAd-lZI-37N8PXOK-a0k3S-1Rs57MGuKKwGVESMlYjjVLx1U7d3qND1mFIRCqvXDRXqaVXzoTdZHESTUi3VMmuR0nGdyRmWq/s400/tanda+muatan+positif.jpg

Muatan listrik dapat bernilai negatif, nol (tidak terdapat muatan atau jumlah satuan muatan positif dan negatif sama) dan negatif. Nilai muatan ini akan memengaruhi perhitungan medan listrik dalam hal tandanya, yaitu positif atau negatif (atau nol). Apabila pada setiap titik di sekitar sebuah (atau beberapa) muatan dihitung medan listriknya dan digambarkan vektor-vektornya, akan terlihat garis-garis yang saling berhubungan, yang disebut sebagai garis-garis medan listrik. Tanda muatan menentukan apakah garis-garis medan listrik yang disebabkannya berasal darinya atau menuju darinya. Telah ditentukan (berdasarkan gaya yang dialami oleh muatan uji positif), bahwa:
~ Muatan positif (+) akan menyebabkan garis-garis medan listrik berarah dari padanya menuju keluar,
~  Muatan negatif (-) akan menyebabkan garis-garis medan listrik berarah menuju masuk padanya.
~ Muatan nol ( ) tidak menyebabkan adanya garis-garis medan listrik.
Teori Dasar Medan Gaya Listrik                     
~  Garis medannya memiliki awal dan akhir, berawal dari penghantar bertegangan sebagai    sumbernya dan berakhir pada struktur konduktif.
~   Besaran medan listrik
~ kuat medan listrik E, satuan kV/m.
Medan adalah suatu besaran yang mempunyai harga pada tiap titik dalam ruang. Atau secara matematis, medan merupakan sesuatu yang merupakan fungsi kontinu dari posisi dalam ruang. 
Medan Listrik merupakan daerah atau ruang di sekitar benda yang bermuatan listrik dimana, jika sebuah benda bermuatan lainnya diletakkan pada daerah itu masih mengalami gaya elektrostatis (disebut juga gaya coulomb).
Gaya listrik adalah gaya yang dialami oleh obyek bermuatan yang berada dalam medan listrik. Rumusan gaya listrik kadang sering dipertukarkan dengan hukum Coulomb, padahal gaya listrik bersifat lebih umum ketimbang hukum tersebut, yang hanya berlaku untuk dua buah muatan titik. Jadi suatu titik dikatakan berada dalam medan listrik apabila suatu benda yang bermuatan listrik ditempatkan pada titik tersebut akan mengalami gaya listrik.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhiyDPw6IPottOQfQ74R1tNXaEctd28_72fr4WHVbsdSTq3csO1NvXJ1D45jVyEpAq66TbMSdAJqUkE7HdbwGlkM_bAXmnBGJnHY7257wLvYlgHdWo41Ot4-xcucm0Bz4T56koGckirIO1q/s320/dtrty.jpg

Gaya listrik, sebagaimana umumnya gaya, dilambangkan dengan huruf F atau biasa d iberi indeks kecil di bawah E (electric) atau L (listrik).
F = qE
Dengan :
                        q = muatan listrik (coulomb)
                        E = medan listrik  (N/C)
Medan Listrik sering juga di pakai istilah kuat medan listrik atau intensitas medan listrik. Kuat medan listrik di suatu titik adalah gaya yang diderita oleh suatu muatan percobaan yang diletakkan dititi itu dibagi oleh besar muatan percobaan.
Adanya medan gaya listrik digambarkan oleh Garis Medan Listrik (Lines of Force) yang mempunyai sifat:
1. Garis Medan listrik keluar dari muatan positif menuju ke muatan negatif
2. Garis medan listrik antara dua muatan tidak pernah berpotongan
3. Jika medan listrik di daerah itu kuat, maka garis medan listriknya rapat dan sebaliknya.

https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjmygi0WsRJNMYCbxmFsLc7a8rUGH4UvDED-Fr2_OS8CYxxtzFRnLvVN8C4W2MnBVVVsnlly2sPccwo6VO_OcjA_ahiY7YwVeJtGjX7qU1RQD-RMhxM4xVlw3Otn_4BKhOOqw7fULs5NA69/s400/meden.jpg\
 Medan ada dua macam yaitu :
  *Medan Skalar, misalnya temperatur, potensial dan ketinggian
  * Medan vektor, misalnya medan listrik dan medan magnet
            Ada dua jenis muatan listrik yang diberi nama positif dan negatif. Muatan listrik selalu merupakan kelipatan bulat dari satuan muatan dasar e. Muatan dari elektron adalah - e dan proton + e. Benda menjadi bermuatan akibat adanya perpindahan muatan dari satu benda ke benda lainnya, biasanya dalam bentuk elektron. Muatan bersifat kekal. Muatan tidak diciptakan maupun dimusnahkan pada proses pemberian muatan, tetapi hanya berpindah tempat.
              Gaya yang dilakukan oleh satu muatan kepada muatan lainnya bekerja sepanjang garis yang menghubungkan muatan-muatan. besarnya gaya berbanding lurus dengan hasil kali muatanmuatan dan berbanding terbalik dengan kuadrat jaraknya. Gaya akan tolak menolak jika muatanmuatan mempunyai tanda yang sama dan akan tarik menarik jika mempunyai tanda yang tidak sama. Hasil ini dikenal sebagai Hukum Coulomb :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh2G2YPkQrCw_p_kwLQjmwBhnneumP-zfydTNSdhs2eZD9Clkwv70g9_q7BFlEQ7oVtXRjVIfvj1-lR2_9QvRaVlyDxwOAiaLDY2ReKsWlXeavTE0lit1z5jA2RqpGLkOl6imTIK142CU5h/s200/gty.jpg

         Dimana :
F = gaya tarik (N)
r = jarak muatan q1 dan q2 (m)
k = tetapan Coulumb = 8,99x109 (N.m2 /C2)
q1 dan q2 = muatan listrik (Coulumb)

Sebuah muatan listrik dikatakan memiliki medan listrik di sekitarnya. Medan listrik adalah daerah di sekitar benda bermuatan listrik yang masih mengalami gaya listrik. Jika muatan lain berada di dalam medan listrik dari sebuah benda bermuatan listrik, muatan tersebut akan mengalami gaya listrik berupa gaya tarik atau gaya tolak.
Arah medan listrik dari suatu benda bermuatan listrik dapat digambarkan menggunakan garis-garis gaya listrik. Sebuah muatan positif memiliki garis gaya listrik dengan arah keluar dari muatan tersebut. Adapun, sebuah muatan negatif memiliki garis gaya listrik dengan arah masuk ke muatan tersebut.
Besar medan listrik dari sebuah benda bermuatan listrik dinamakan kuat medan listrik. Jika sebuah muatan uji q’ diletakkan di dalam medan listrik dari sebuah benda bermuatan, kuat medanlistrik E benda tersebut adalah besar gaya listrik F yang timbul di antara keduanya dibagi besar muatan uji. Jadi, dituliskan:
F = E q’
Kuat medan listrik juga merupakan besaran vektor karena memiliki arah, maka penjumlahan antara dua medan listrik atau lebih harus menggunakan penjumlahan vektor. Arah medan listrik dari sebuah muatan positif di suatu titik adalah keluar atau meninggalkan muatan tersebut. Adapun, arah medan listrik dari sebuah muatan negatif di suatu titik adalah masuk atau menuju ke muatan tersebut.
Distribusi muatan listrik
Medan listrik tidak perlu hanya ditimbulkan oleh satu muatan listrik, melainkan dapat pula ditimbulkan oleh lebih dari satu muatan listrik, bahkan oleh distribusi muatan listrik baik yang diskrit maupun kontinu. Contoh-contoh distribusi muatan listrik misalnya:
·         kumpulan titik-titik muatan
·         kawat panjang lurus berhingga dan tak-berhingga
·         lingkaran kawat
·         pelat lebar berhingga atau tak-berhingga
·         cakram tipis dan cincin
  
Garis-garis Medan Listrik
* Memvisualisasikan pola-pola medan listrik adalah dengan menggambarkan garis-garis dalam arah medan listrik.
*  Vector medan listrik di sebuah titik titik, tangensial terhadap garis-garis medan listrik.
*  Jumlah garis-garis per satuan luas permukaan yang tegak lurus garis-garis medan listrik, , sebanding dengan medan listrik di daerah tersebut.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjdCpyn0xXjb4602pWI6Z9wMxrvYO1HdHil-vs5tM5s4UNpwbQCRJtKI4YnROc9-TReiaqqjj7_wtvuhqLIidY7nnuFPTrF0sqRc3FwfJGukeKfdVwEhkykUKemsRLDVm-vzXJB27WXQ26i/s400/garis-garis+medan+magnet.jpg

Gaya Coulomb di sekitar suatu muatan listrik akan membentuk medan listrik. Dalam membahas medan listrik, digunakan pengertian kuat medan. Untuk medan gaya Coulomb, kuatmedan listrik adalah vektor gaya Coulomb yang bekerja pada satu satuan muatan yang kita letakkan pada suatu titik dalam medan gaya ini, dan dinyatakan dengan E (r).
Muatan yang menghasilkan medan listrik disebut muatan sumber. Misalkan muatan sumber berupa muatan titik q. Kuat medan listrik yang dinyatakan pada suatu vektor posisi terhadap muatan sumber tsb, adalah medan pada satu satuan muatan uji. Bila kita gunakan muatan uji sebesar q’→0 pada vektor posisi r relatif terhadap muatan sumber, kuat medan harus sama dengan E(r ).
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhirjbhEAzaDpQGNzTSYOQp2iPNlbQU8fsMaaU7Wc6m7LUd5cu3M6tzX4Z5sFaYWo8UK2jAXDl5YQAFITrAItf8nlekHngQvgfUYoixA6Mz9spIot5AaNjtc1ImBXBzh8YdzTLrT4YBjDC-/s200/tytyu.jpg
dimana adalah vektor satuan arah radial keluar.
Kuat Medan Gaya Listrik
Medan gaya listrik yaitu Gaya elektrostatik yang dialami oleh satu satuan muatan positif yang diletakkan di titik itu setiap satuan muatannya. Didefinisikan sebagai hasil bagi gaya listrik yang bekerja pada suatu muatan uji dengan besar muatan uji tersebut.
Besar medan listrik dari sebuah benda bermuatan listrik dinamakan kuat medan listrik. Jika sebuah muatan uji q’ diletakkan di dalam medan listrik dari sebuah benda bermuatan, kuat medan listrik E benda tersebut adalah besar gaya listrik F yang timbul di antara keduanya dibagi besar muatan uji.
Kuat medan listrik juga merupakan besaran vektor karena memiliki arah, maka penjumlahan antara dua medan listrik atau lebih harus menggunakan penjumlahan vektor. Arah medan listrik dari sebuah muatan positif di suatu titik adalah keluar atau meninggalkan muatan tersebut. Adapun, arah medan listrik dari sebuah muatan negatif di suatu titik adalah masuk atau menuju ke muatan tersebut.
1.      Di Suatu Titik Akibat Suatu Muatan Sumber
Misalkan ada Sebuah Titik P yang berjarak r dari suatu muatan sumber q, maka arah kuat medan listrik di titik P searah dengan gaya elektrostatis yang dialami oleh sebuah muatan uji q’ yang bermuatan positif yang diletakkan di titik tersebut, dan digambarkan sebagai berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgfLv6zmYRw7EBC9Ef5r3J4S1QrWy0ZGTNRXHkd2kgxzqaO47lX1hkflzCiS3x4It5Uftqi1VRfGIja7jGKpsByQd2ThCm7WBDBob2_tHSeCRtCE8GAmnQ_ZJJGE74SYlMms4ml-nB7IxQN/s400/gytty.jpg
2.      Akibat Beberapa Muatan
Medan listrik adalah gaya listrik persatuan muatan. Karena gaya listrik mengikuti prinsip superposisi secara vektor, demikian juga yang terjadi pada medan listrik. Hal ini berarti kuat medan listrik dari beberapa muatan titik adalah jumlah vektor kuat medan listrik dari masing – masing muatan titik. Misalkan dua buah muatan listrik +q1 dan –q2 terletak seperti terlihat dalam gambar:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgSqZBhNC8nxfORMmu_qnSFTzUiJPmSGzp3sR2T-2qhvRiUF41xeoPyQwD6sKY83lrXRpE1314OcDwt7jRSabw8EE8pW9kmIYg96Zk8ZUltCx-hwwBVWQ7h7EY_kGyqQc69kNOfxK8s6OaB/s320/yrr7.jpg
Kuat medan listrik di P akibat muatan +q1 adalah E1 yang arahnya menjauhi q1 dan kuat medan listrik di P akibat ,muatan – q2 adalah E2 yang menuju q2. Dengan metode penjumlahan vektor, maka kuat medan listrik total di titik P ( Ep ) adalah :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgqpjnjOMboRf3XNoZswwKB9EE3tZkW2ilo3IBi2XMPB_Xbst76mCzOjBwE3oz715lL-sHwtWnGBQkZyRg2PcGVbRhkhKbpk6QLgD4dwvz2lcenOtp7N0h1dKWHW_1i8vO_ouOmCVQLmymz/s320/656577.jpg

Energi medan listrik
        Medan listrik menyimpan energi. Rapat energi suatu medan listrik diberikan oleh
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiZ2JOFS14HUnUEHLMcavI7b6B8-UykRnT7uPNjyaPtmz_VyAo81U0IGOaZk-ClyYjEVhFEcbcVxvD3yd6Y83Yyhy9HLk27wK7gTGanHGbiXoS4x-fOh4_rZHhzbvUa6Z3bVvX0GTiat99S/s200/8878.jpg



Dengan :
*  ϵ adalah permittivitas medium di mana medan listrik terdapat, dalam ruang vakum ϵ = ϵ0.
*  E adalah vektor medan listrik.
Total energi yang tersimpan pada medan listrik dalam suatu volum V adalah

 
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhwf0625ZuVFeVM0Mn9qcpBxQ0JI_U2H7mUqB-cqho1p9AHBLHRM_gA6F4NH3r_eahJSacdPweUfVPG9QjNGXuWwM-ZK0YAgr81FfHkmsfHOTPhyphenhyphenq1Ft5e8OEL9pesLv_oJEfkBq6xPuTqj/s1600/i798989.jpg 
Dengan dT  adalah elemen diferensial volum.
Fluks Listrik
Apabila terdapat garis-garis gaya dari suatu medan listrik homogen yang menembus tegak lurus suatu bidang seluas A, maka hasil kali antara kuat medan listrik E dan luas bidang A yang tegak lurus dengan medan listrik itu disebut dengan fluks listrik (Φ).
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjItcvH_dUO-p1gg5YvhMaFY1rHAB2coNaFj76A_n51GGlz6sBdVk3nf0VyiSMl4QtJVxQ-dG0EQlPpUlZb6BwDtyJD6xTMZ2AU1JMxuv57t-VxXxPBZZI2E4lOnEnAtXx-G7_m0aCXYWw6/s320/yuyiyi.jpg
Di mana Φ = fluks medan listrik (N/C m2 = weber = Wb)
E = kuat medan listrik (N/C)
A = luas bidang yang ditembus listrik (m2)
θ = sudut antara vektor E dan garis normal bidang
Hubungan Medan Listrik dan Medan Magnet dengan Kesehatan
Para ahli telah sepakat bahwa medan listrik dan medan magnet yang berasal dari jaringan listrik digolongkan sebagai frekuensi ekstrim rendah dengan konsekuensi kemampuan memindahkan energi sangat kecil, sehingga tidak mampu mempengaruhi ikatan kimia pembentuk sel-sel tubuh manusia. Disamping itu sel tubuh manusia mempunyai kuat medan listrik sekitar 10 juta Volt/m yang jauh lebih kuat dari medan listrik luar. Medan listrik dan medan magnet dengan frekuensi ekstrim rendah ini juga tidak mungkin menimbulkan efek panas seperti yang dapat terjadi pada efek medan elektromagnet gelombang mikro, frekuensi radio, dan frekuensi yang lebih tinggi seperti pada telepon seluler. Adanya sementara orang yang tinggal dekat dengan jaringan transmisi listrik melaporkan keluhan-keluhan seperti sakit kepala, pusing, berdebar dan
susah tidur serta kelemahan seksual adalah bersifat subyektif, karena persepsi mereka yang kurang tepat.
Gejala Efek Medan Gaya Listrik:
1. Sistem saraf. Mengantuk, insomnia, susah berkonsentrasi, mudah lupa, cepat marah, depresi,tegang leher, sempoyongan, nyeri kepala, kesemutan.
2. Sistem sirkulasi (jantung dan pembuluh darah). Nyeri dada, jantung berdebar-debar, gangguan irama jantung, tekanan darah tinggi.
3. Sistem pencernaan. Sariawan, sakit maag (gastritis), sembelit, mencret, perut kembung.
4. Sistem penglihatan. Mata mudah lelah, penglihatan kabur.
5. Sistem pendengaran. Telinga berdenging. Sistem anggota gerak tubuh. Mudah lelah, nyeri otot, kaku pada persendian.
6. Sistem anggota gerak tubuh. Mudah lelah, nyeri otot, kaku pada persendian.
7. Sistem ekskresi (ginjal dan salurannya). Sering kencing, susah kencing.

MAGNET

Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu MagnesianMagnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa (sekarang berada di wilayah Turki) di mana terkandung batu magnet yang ditemukan sejak zaman dulu di wilayah tersebut.
Magnet adalah suatu materi yang mempunyai suatu medan magnet. Medan magnet ini tidak terlihat tetapi bertanggung jawab untuk properti yang paling menonjol dari magnet, yaitu kekuatan yang menarik pada bahan feromagnetik, seperti zat besi, dan menarik atau mengusir magnet lainnya. Magnet bisa dalam wujud magnet tetap atau magnet tidak tetap. Magnet yang ada sekarang ini, hampir semuanya adalah magnet buatan. Magnet selalu memiliki dua kutub yaitu: kutub utara (north/ N) dan kutub selatan (south/ S). Walaupun magnet itu dipotong-potong, potongan magnet kecil tersebut akan tetap memiliki dua kutub.
Magnet dapat menarik benda lain. Beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet. Satuan intensitas magnet menurut sistem metrik pada Satuan Internasional (SI) adalah Tesla dan SI unit untuk total fluks magnetik adalah weber. 1 weber/m^2  =  1 tesla, yang memengaruhi satu meter persegi.
Jenis magnet
1.        Magnet tetap
Magnet tetap (permanen) tidak memerlukan tenaga atau bantuan dari luar untuk menghasilkan daya magnet (berelektromagnetik).
Jenis magnet tetap selama ini yang diketahui terdapat pada:
a.    Magnet neodymium, merupakan magnet tetap yang paling kuat. Magnet neodymium  (juga dikenal sebagai NdFeB, NIB, atau magnet Neo), merupakan sejenis magnet tanah jarang, terbuat dari campuran logam neodymium,
b.  Magnet Samarium-Cobalt: salah satu dari dua jenis magnet bumi yang langka, merupakan magnet permanen yang kuat yang terbuat dari paduan samarium dan kobalt.
c.      Ceramic Magnets 
d.     Plastic Magnets
e.      Alnico Magnets
2.        Magnet tidak tetap
Magnet tidak tetap (remanen) tergantung pada medan listrik untuk menghasilkan medan magnet. Contoh magnet tidak tetap adalah elektromagnet.
3.        Magnet buatan
Magnet buatan meliputi hampir seluruh magnet yang ada sekarang ini.
Bentuk magnet buatan antara lain:
a.      Magnet U
b.      Magnet ladam 
 c.   Magnet batang
d.  Magnet lingkaran  
e.  Magnet jarum (kompas)
Medan Magnet
Arus mengalir melalui sepotong kawat membentuk suatu medan magnet (M) disekeliling kawat. Medan tersebut terorientasi menurut aturan tangan kanan. Dalam ilmu Fisika, medan magnet adalah suatu medan yang dibentuk dengan menggerakan muatan listrik (arus listrik) yang menyebabkan munculnya gaya di muatan listrik yang bergerak lainnya. (Putaran mekanika kuantum dari satu partikel membentuk medan magnet dan putaran itu dipengaruhi oleh dirinya sendiri seperti arus listrik. Inilah yang menyebabkan medan magnet dari ferromagnet “permanen”). Sebuah medan magnet adalah medan vector, yaitu berhubungan dengan setiap titik dalam ruang vektor yang dapat berubah menurut waktu. Arah dari medan ini adalah seimbang dengan arah jarum kompas yang diletakkan di dalam medan tersebut.
Sifat-Sifatnya
Hasil kerja Maxwell telah banyak menyatukan listrik statis dengan magnetisme, yang menghasilkan sekumpulan dari empat persamaan mengenai kedua medan tersebut. Namun, di bawah formula Maxwell, masih ada dua medan yang berbeda yang menjelaskan fenomena berbeda. Einstein lah yang berhasil menunjukan, dengan relativitas khusus, bahwa medan listrik dan medan magnet adalah dua aspek dari hal yang sama (tensor tingkat 2), dan seorang pengamat bisa merasakan gaya magnet di mana seorang pengamat bergerak hanya merasakan gaya elektrostatik.
Dengan demikian, menggunakan spesial relativitas, gaya magnet adalah manifestasi dari gaya elektrostatik dari muatan listrik yang bergerak, dan bisa diperkirakan dari pengetahuan tentang gaya elektrostatik dan gerakan muatan tersebut (relatif terhadap seorang pengamat)
Cara Membuat Magnet
Magnet adalah suatu obyek yang mempunyai suatu medan magnet dan bisa menarik benda logam. Selain berasal dari batu yang dihasilkan oleh alam, magnet juga bisa dibuat dengan menggunakan bahan-bahan lain. Bahan yang biasa dijadikan magnet adalah besi. Besi lebih mudah untuk dijadikan magnet daripada baja. Tapi sifat kemagnetan besi lebih mudah hilang daripada baja. Oleh sebab itu, besi lebih sering digunakan untuk membuat elektromagnet. Namun magnet juga dapat kita buat sendiri dengan cara dan bahan yang sangat sederhana. Salah satunya dengan cara dialiri listrik satu arah, menggosok dan induksi. Bagaimana caranya? Perhatikan cara dibawah ini!
·         Dengan Cara Mengaliri Listrik
Suatu bahan akan memiliki sifat magnet ketika dialiri arus listrik searah, namun akan hilang kemagnetannya jika arus tersebut dihilangkan. Apabila bahan dialiri arus listrik yang cukup besar, maka sifat kemagnetannya tidak berubah (magnet tetap).
 Alat dan Bahan :
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiEJLb7pko-hdmh-mSwXzq0F4SbBUlF-30wd_ATGCvFoQNTxSYBb0of1kE4gXUc-7-fcdmFudD70-icwNgvT4_Zfx_PCfnimu2czumrSE_FL_RkBBuHHfow9U-u8xfpjY2Nl0wEGfbh-qY/s200/5.jpg
   1.      Kabel yang berisi kawat tembaga (sehelai saja bila kabelnya rangkap dua).
    2.      Paku besar.
   3.      Baterai.
   4.      Paper klip atau logam kecil lainnya (paku payung, jarum, dll)
Cara Membuat:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhRjso0QgXs5CbOByVtDXhLGHCX79w-EYJpuJWrDxscJnQIdLs0NKgTxtrU6ELIn3DYZllqWnHiblu7Hd80_Atal6enkBhPa59O7Bn9TAgDkYmrcx_Z8lfjCiLzOJfjOdrS3iL0rgTQdn4/s200/4.jpg
    1.      Kupas kulit kabel tembaga pada tiap jung-ujungnya.
   2.      Lilitkan kabel tembaga pada paku (usahakan serapat mungkin).
   3.      Tempelkan ujung-ujung kabel tembaga pada baterai, dan tunggu beberapa saat.
  
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipkGiCIHtuBsIzQgU-LZynHz3FIo6UVHYABMubbxPIBYq1QQXbIqDGZCCxibwBRTo9Zv_WxZV6hAXMa1D8a4Xc48ClodKorj8QJaKZKgQ9S__axE_W5Got2-Hsg7elctuN7_p4DEXFj6c/s200/1.jpg
    4.      Untuk mengujinya coba dekatkan paku tersebut pada paper klip atau logam kecil lainnya.
     5.      Coba amati apa yang terjadi?
Bagaimana Hal Tersebut Bisa Terjadi?

           Paku tersebut dapat bersifat seperti magnet karena ada proses yang dinamakan elektromagnetik. Di sekitar kawat berarus listrik itu terdapat medan magnet. Dalam percobaan ini, yang menjadi sumber listrik adalah baterai yang mengalirkan arus sepanjang kabel tembaga yang melilit paku. Semakin banyak lilitan maka semakin besar / kuat medan magnetnya. Akibat dari adanya medan magnet ini, maka paper klip / logam-logam kecil lainnya dapat menempel pada paku.
Dengan Cara Menggosok
Suatu bahan dapat dibuat menjadi magnet dengan cara menggosokkan sebatang magnet tetap secara berulang ulang pada bahan tersebut. Sifat kemagnetan bahan memiliki kutub yang berlawanan dengan magnet penggosoknya.
Alat dan Bahan:
1.                  Magnet batang
2.                  1 buah Paku besar
3.                  Klip kertas
Cara Membuat:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEii5T2eVCcUXLwBlHmVD0TSwW8B1R2cNpTFCwwzOQDzze5Y7zCjTvI4929m5Qc2c6139vs50SLgPXD81j-O2pN0_K9F42YH5vTHbII0HdruPQLgsID7VY_KMdIG0fCa07C0_m-zhGpvJY8/s200/IMG00302-20110118-1530.jpg
1.                  Gosokkan magnet pada batang paku berulang-ulang, dengan cara searah.
2.                  Coba tempelkan ujung paku pada klip kertas.
3.                  Amati apa yang terjadi?
4.                  Apakah klip kertas dapat menempel pada paku?

Dengan Cara Induksi
Suatu bahan yang didekatkan pada magnet, maka sifat kemagnetan magnet akan ikut berpindah ke bahan tersebut, namun sifat kemagnetan bahan akan hilang ketika magnet dijauhkan dari bahan.
Alat dan bahan :
1.      2 buah magnet batang
2.      1 buah paku besar
3.      Beberapa buah klip kertas
Cara Membuat:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhSmkFlGYJCJUN_Wi70b47OrQceWzWfDzhxWXDCGJ5y-3fpWllinYqQpUYzRPm3iC9nxWsjww9jQhYwWCHaH0vtCp79X66jysXb0D30vw2Cq3CiIFlp3DqmCN_rAb1OEQgGXKYGqk3NmaQ/s200/IMG00309-20110118-1537.jpg
1.                  Tempelkan 1 buah magnet batang pada salah satu ujung paku besar!
2.                  Dekatkan ujung paku yang lain pada klip kertas!
3.                  Amati apa yang terjadi,
4.                  Apakah klip kertas menempel pada ujung paku?
Menghilangkan sifat kemagnetan
Cara menghilangkan sifat kemagnetan antara lain: 
     a.   Dibakar
   b.  Dibanting-banting. 
   c.  Dipukul-pukul. 
   d.  Magnet diletakkan pada solenoida(kumparan kawat berbentuk tabung panjang dengan lilitan yang sangat rapat) dan dialiri arus listrik bolak-balik (AC).
Manfaat Magnet
1.    Media perekaman magnetic
VHS kaset berisi gulungan pita magnetik. Informasi yang membentuk video dan suara dikodekan pada lapisan magnetik pada pita. Kaset audio yang umum juga mengandalkan pita magnetik. Demikian pula, di komputer, floppy disk dan data rekam hard disk pada lapisan tipis magnetik.
2.   Kredit, debit, dan kartu ATM
Semua kartu ini memiliki strip magnetik di satu sisi. Strip ini mengkodekan informasi untuk menghubungi lembaga keuangan individu dan terhubung dengan akun mereka.
3.   Televisi umum dan monitor computer
TV dan layar komputer yang berisi tabung sinar katoda menggunakan elektromagnet untuk memandu elektron ke layar. Layar Plasma dan LCD menggunakan teknologi yang berbeda..
4.   Speaker dan mikrofon
Kebanyakan speaker menggunakan magnet permanen dan kumparan pembawa arus untuk mengkonversi energi listrik (sinyal) menjadi energi mekanik (gerakan yang menciptakan suara). Kumparan ini dibungkus sekitar gelendong melekat pada kerucut speaker dan membawa sinyal sebagai perubahan arus yang berinteraksi dengan bidang magnet permanen. Kumparan suara terasa kekuatan magnetik dan sebagai respons, bergerak ke kerucut dan tekanan udara tetangga, sehingga menghasilkan suara. Mikrofon dinamis menggunakan konsep yang sama, tetapi secara terbalik. Mikrofon memiliki diafragma atau membran yang melekat pada sebuah kumparan kawat. Kumparan terletak di dalam magnet berbentuk khusus. Bila suara bergetar membran, kumparan bergetar juga. Sebagai koil bergerak melalui medan magnet, tegangan induksi di koil. Tegangan ini mengarahkan arus dalam kawat ke karakteristik suara asli.
5.   Gitar listrik
Gitar listrik menggunakan pickup magnetik untuk mentransduksi getaran senar gitar menjadi arus listrik yang kemudian dapat diperkuat. Hal ini berbeda dengan prinsip belakang speaker dan mikrofon dinamis karena getaran dirasakan langsung oleh magnet, dan diafragma tidak bekerja.
6.   Motor listrik dan generator
Beberapa motor listrik mengandalkan kombinasi elektromagnet dan magnet permanen, dan seperti pengeras suara, mereka mengubah energi listrik menjadi energi mekanik. Sebuah generator adalah sebaliknya: ia mengubah energi mekanik menjadi energi listrik dengan memindahkan konduktor melalui medan magnet.
7.    Mainan
Mengingat kemampuan mereka untuk melawan gaya gravitasi dalam jarak dekat, magnet yang sering digunakan dalam mainan anak-anak, seperti roda Ruang Magnet dan Levitron, untuk efek lucu.
1.  Magnetic Resonance Imaging (MRI)
Penggunaan magnet yang paling umum untuk kesehatan  adalah scanner Magnetic Resonance Imaging (MRI) di rumah sakit. Perangkat raksasa ini membantu dokter mendapatkan tampilan struktur organ dalam pasien tanpa operasi invasive, hasilnya kompleks namun akurat. MRI menggunakan magnet untuk menciptakan secara rinci dan memungkinkan tampilan yang berbeda ketingginannya jika dokter ingin mengetahui detail lebih lanjut.
2.  Mengobati Epilepsi
Pengobatan magnetic dapat mengurangi gejala penyakit epilepsy kronis. Sebuah penelitian di Jerman pada tahun 1999 menemukan bahwa magnet dengan frekuensi rendah dapat mengurangi atau membatasi kejang dan efektif bagi pasien yang tidak mempan dengan pengobatan biasa. Kumparan magnet ditempatkan di samping kepala untuk mengarahkan gelombang magnet ke otak.penelitian mengklaim bahwa sebagian besar peserta penelitian berkurang kejangnya hingga setengah. Tapi, pengobatan magnetic ini hanya bertahan sekitar 6-8 minggu.
3.  Mengobati Radang Sendi
Dalam suatu penelitian yang dilakukan oleh Peninsula Medical School tahun 2004, peneliti menemukan bahwa magnet bisa meredakan rasa sakit akibat radang sendi di lutut dan pinggul. Namun, para peneliti mengakui bahwa hasil tersebut bisa disebabkan oleh efek placebo.
4.  Mengobati Alzheimer
Sebuah penelitian di Italia menemukan bahwa pengobatan magnetic dapat meningkatkan aktivitas kortikal otak pasien dan membantu memahami dunia di sekitarnya dengan lebih baik. Laporan yang dimuat dalam Jurnal of Neurology, Meurology and Psychiatry ini menemukan bahwa stimulasi magnetic yang berulang dapat bermanfaat bagi pasien penyakit saraf seperti alzheimer.
5.  Meringankan Depresi
Pasien depresi yang mendapat stimulasi magnetic mengakui lebih relaks dibandingkan jika tidak mendapat pengobatan tersebut. Sebuah tim di Universitas Kedokteran Carolina Selatan mensurvei 190 orang penderita depresi. Setengah diantaranya mendapatkan pengobatan magnetic. Hasilnya, 14% pasien melaporkan gejala depresinya menjadi lebih ringan. Sedangkan dalam kelompok paseblo, hanya 5% yang merasakan perbaikan.

6.  Membantu Operasi Jantung
Partikel magnetic juga telah digunakan dalam operasi jantung. Para ilmuwan menggunakan partikel kecil magnet yang melekat pada sel induk untuk membantu memperbaiki hati yang rusak. Laporan penelitiaan yang dimuat dalam Jounal of American College of Cardiology ini menemukan bahwa teknik ini efektif pada tikus dan akan diuji coba pada manusia untuk tahap berikutnya. Efektivitas sel-sel induk meningkat 5 kali karena partikel magnetmemandu sel-sel ke daerah sasaran.
7.  Mengurangi Pembengkakan
Sebuah penelitian oleh University of Virginia membuktikan bahwa magnet dapat mengurangi pembengkakan. Ilmuwan menemukan bahwa magnet statis mampu mengurangi pembengkakan kaki belakang tikus hingga 50%. Teorinya adalah daerah yang terkena kalsium dan sel otot menyebabkan pelebaran pembuluh darah arteri. Dengan memaparkan magnet, pelebaran tersebut dapat dikurangi
8.  Memperbaiki Jaringan yang Luka
Pemanfaatan medan magnet pada bagian yang luka dapat membantu mengembalikan keseimbangan elektromagnet menjadi normal kembali, dimana medan magnet akan melancarkan peredaran darah (dinding kapiler) dan jaringan-jaringan otot sehingga aliran darah meningkat dengan membawa oksigen dan nutrisi begitu banyak ke bagian jaringan yang luka (hal ini dapat menghilangkan rasa nyeri dan pembengkakan pada jaringan luka dengan kata lain dpat mempercepat penyembuhan luka). Kenapa demikian? Karena fungsi dari fisik dan mental tubuh manusia dikendalikan oleh electromagnet yang diakibatkan dari pergerakan ion elektrokimiawi di dalam tubuh. Pada saat ada jaringan luka, ion energy postif bergerak kearah luka (daerah yang mengalami kerusakan) sehingga menimbulkan rasa sakit dan terjadi pembengkakan.


Komentar